Extensions 1→N→G→Q→1 with N=C3xD7 and Q=C32

Direct product G=NxQ with N=C3xD7 and Q=C32
dρLabelID
D7xC33189D7xC3^3378,53

Semidirect products G=N:Q with N=C3xD7 and Q=C32
extensionφ:Q→Out NdρLabelID
(C3xD7):C32 = C32xF7φ: C32/C3C3 ⊆ Out C3xD763(C3xD7):C3^2378,47

Non-split extensions G=N.Q with N=C3xD7 and Q=C32
extensionφ:Q→Out NdρLabelID
(C3xD7).1C32 = C9xF7φ: C32/C3C3 ⊆ Out C3xD7636(C3xD7).1C3^2378,7
(C3xD7).2C32 = C9:3F7φ: C32/C3C3 ⊆ Out C3xD7636(C3xD7).2C3^2378,8
(C3xD7).3C32 = C9:4F7φ: C32/C3C3 ⊆ Out C3xD7636(C3xD7).3C3^2378,9
(C3xD7).4C32 = C3xC7:C18φ: C32/C3C3 ⊆ Out C3xD7189(C3xD7).4C3^2378,10
(C3xD7).5C32 = C32.F7φ: C32/C3C3 ⊆ Out C3xD7636(C3xD7).5C3^2378,11
(C3xD7).6C32 = D7:He3φ: C32/C3C3 ⊆ Out C3xD7636(C3xD7).6C3^2378,12
(C3xD7).7C32 = D7xC3xC9φ: trivial image189(C3xD7).7C3^2378,29
(C3xD7).8C32 = D7xHe3φ: trivial image636(C3xD7).8C3^2378,30
(C3xD7).9C32 = D7x3- 1+2φ: trivial image636(C3xD7).9C3^2378,31

׿
x
:
Z
F
o
wr
Q
<